Francisella Tularensis Blue–Gray Phase Variation Involves Structural Modifications of Lipopolysaccharide O-Antigen, Core and Lipid A and Affects Intramacrophage Survival and Vaccine Efficacy
نویسندگان
چکیده
Francisella tularensis is a CDC Category A biological agent and a potential bioterrorist threat. There is no licensed vaccine against tularemia in the United States. A long-standing issue with potential Francisella vaccines is strain phase variation to a gray form that lacks protective capability in animal models. Comparisons of the parental strain (LVS) and a gray variant (LVSG) have identified lipopolysaccharide (LPS) alterations as a primary change. The LPS of the F. tularensis variant strain gains reactivity to F. novicida anti-LPS antibodies, suggesting structural alterations to the O-antigen. However, biochemical and structural analysis of the F. tularensis LVSG and LVS LPS demonstrated that LVSG has less O-antigen but no major O-antigen structural alterations. Additionally, LVSG possesses structural differences in both the core and lipid A regions, the latter being decreased galactosamine modification. Recent work has identified two genes important in adding galactosamine (flmF2 and flmK) to the lipid A. Quantitative real-time PCR showed reduced transcripts of both of these genes in the gray variant when compared to LVS. Loss of flmF2 or flmK caused less frequent phase conversion but did not alter intramacrophage survival or colony morphology. The LVSG strain demonstrated an intramacrophage survival defect in human and rat but not mouse macrophages. Consistent with this result, the LVSG variant demonstrated little change in LD(50) in the mouse model of infection. Furthermore, the LVSG strain lacks the protective capacity of F. tularensis LVS against virulent Type A challenge. These data suggest that the LPS of the F. tularensis LVSG phase variant is dramatically altered. Understanding the mechanism of blue to gray phase variation may lead to a way to inhibit this variation, thus making future F. tularensis vaccines more stable and efficacious.
منابع مشابه
Evidence Suggesting That Francisella tularensis O-Antigen Capsule Contains a Lipid A-Like Molecule That Is Structurally Distinct from the More Abundant Free Lipid A
Francisella tularensis, the Gram-negative bacterium that causes tularemia, produces a high molecular weight capsule that is immunologically distinct from Francisella lipopolysaccharide but contains the same O-antigen tetrasaccharide. To pursue the possibility that the capsule of Francisella live vaccine strain (LVS) has a structurally unique lipid anchor, we have metabolically labeled Francisel...
متن کاملThe immunologically distinct O antigens from Francisella tularensis subspecies tularensis and Francisella novicida are both virulence determinants and protective antigens.
We have determined the sequence of the gene cluster encoding the O antigen in Francisella novicida and compared it to the previously reported O-antigen cluster in Francisella tularensis subsp. tularensis. Immunization with purified lipopolysaccharide (LPS) from F. tularensis subsp. tularensis or F. novicida protected against challenge with Francisella tularensis subsp. holarctica and F. novicid...
متن کاملMonophosphoryl Lipid A Enhances Efficacy of a Francisella tularensis LVS-Catanionic Nanoparticle Subunit Vaccine against F. tularensis Schu S4 Challenge by Augmenting both Humoral and Cellular Immunity.
Francisella tularensis, a bacterial biothreat agent, has no approved vaccine in the United States. Previously, we showed that incorporating lysates from partially attenuated F. tularensis LVS or fully virulent F. tularensis Schu S4 strains into catanionic surfactant vesicle (V) nanoparticles (LVS-V and Schu S4-V, respectively) protected fully against F. tularensis LVS intraperitoneal (i.p.) cha...
متن کاملType A Francisella tularensis Acid Phosphatases Contribute to Pathogenesis
Different Francisella spp. produce five or six predicted acid phosphatases (AcpA, AcpB, AcpC, AcpD, HapA and HapB). The genes encoding the histidine acid phosphatases (hapA, hapB) and acpD of F. tularensis subsp. Schu S4 strain are truncated or disrupted. However, deletion of HapA (FTT1064) in F. tularensis Schu S4 resulted in a 33% reduction in acid phosphatase activity and loss of the four fu...
متن کاملIntracellular survival mechanisms of Francisella tularensis, a stealth pathogen.
Research on the highly virulent and contagious, facultative intracellular bacterium Francisella tularensis has come into the limelight recently, but still little is known regarding its virulence mechanisms. This review summarizes recent studies on its intramacrophage survival mechanisms, some of which appear to be novel.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 1 شماره
صفحات -
تاریخ انتشار 2010